FDA approves new treatment that uses engineered genes to treat aggressive leukemia, adding a ‘superweapon’ to the existing armamentarium against cancer

microscope-2352650_640

The Food and Drug Administration (FDA) agency has recently approved a revolutionary new treatment for one of the most aggressive forms of leukemia, effectively implementing the first ever gene-therapy to treat cancer in the United States.

The brand new treatment is a Chimeric Antigen Receptor (CAR) T-cell therapy created by Swiss pharma company Novartis and commercialized as Kymriah. The therapy has been approved to treat pediatric acute lymphoblastic leukemia (ALL) in patients up to the age of 25 with B-cell precursor ALL that is refractory or in second or later relapse.

ALL is a type of aggressive cancer of the white blood cells and bone marrow. The disease progresses rapidly, causing overproduction of immature white blood cells (lymphocytes), which inhibits the production of mature cells. Death will occur without quick treatment, but complete remission in children is also a typical outcome.

Kymriah uses genetically-modified cells to target a specific cancer cells in the receptor.

The process involves retrieving cells from the patient and sending them to a facility where they are genetically altered to include a new protein (CAR). The modified cells are then sent back and injected into the patient. The new cells stimulate the receptor’s immune system to target specific leukemia cells that contain the CD19 antigen.
]
Each single treatment is effectively ‘customized’ to every patient. Kymriah has shown astonishingly positive results in clinical trials, where 83 percent of patients treated with it achieved remission within three months.

Kymriah is not without its downsides. Its cost is rather high at present, for example. A single treatment costs $475,000, which may seem incredibly high, but it’s actually well below market expectations of around $700,000 per vial. And that price tag is for the treatment alone, it does not include hospitalization costs, or any other associated monetary outlays. On this regard, Novartis is working with health centres that provide Medicaid and Medicare facilities to iron out financial arrangements for those patients who undergo this treatment.

The new therapy may also cause severe neurological side effects in some cohorts, and the activation of CAR cells in the receptor may trigger a cytokine release syndrome (CRS). Both side effects may be fatal, but are treatable.

Despite these issues, Kymriah has been hailed as a quantum leap forward in the fight against cancer, particularly in the treatment of ALL. Scientists are now open to new avenues of research, and may consider applying similar therapies for the treatment of other types of leukemias and solid tumours.

Scientists develop new process to induce death of cancer cells

white-blood-cell-543471_1280

The fight against cancer has scored a major victory today, after researchers develop a brand new process to induce the death of cancerous cells.

The new method, known as Caspase Independent Cell Death (CICD), has achieved total eradication of tumours in experimental models.

Current standard treatments for cancer patients include chemotherapy and radiotherapy, which kill off cancer cells via apoptosis.

Apoptosis is a sort of ‘programmed cell death’, where a cell is effectively induced to kill itself. This process involves proteins called caspases, which kick off the apoptosis process by breaking down the essential components needed for cell survival. The cells shrink, and as they do, they send out distress signals which are picked up by the human immune system. Macrophages (white blood cells) are then dispatched to consume the dying cell, essentially cleaning up the body. Apoptosis is often neat and leads no trace of the cell.

Despite its efficacy, apoptosis often fails to kill off all targeted cells, and crucially, the remaining cancerous cells fail to trigger an immune response, which is the reason why some types of cancer tend to reoccur.

CICD triggers cell death in such a way that the dying cell alerts the human immune system via the release of inflammatory proteins. The body responds and kills off the cancerous cells that escaped treatment.

CICD has shown great potential by inducing complete tumour regression in experimental models, and the results suggest new ways of treating cancer more effectively in the near future.

Clinical trial shows that anti-inflammatory drug greatly reduces risk of cardiac events and the onset of cancer

hospital-1338585_640

A recent clinical trial for an anti-inflammatory drug has yielded encouraging results for patients who have previously suffered a heart attack.

The drug in question, canakinumab, was tested on 10,000 patients who had already experienced a heart attack and also had inflammation biomarkers. The four year-long clinical trial, sponsored by the drug’s manufacturer Novartis, yielded extremely positive results.

The study design called for a subcutaneous canakinumab injection every three months for the active group, or statins or placebo for the control groups. Patients participating in the trial were followed for four years.

At the end of the trial period, the study team reported a remarkable 15% reduction in the reocurrence of vascular events (including non-fatal heart attacks and strokes). Typically, about 25% of patients who survive a heart attack will experience another cardiac event within five years, despite regular medication. Canakinumab induced a marked reduction of such incidence.

In addition to that, the drug was found to reduce the incidence of cancer onset by about half.

According to medical sources, the results were ‘above and beyond’ for those patients taking statins, the current standard treatment for vascular inflammation.

About 200,000 require urgent medical treatment for a cardiac event in the UK alone every year.